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Abstract

Federated learning (FL) enables multi-agents to collab-
orate with a central server to build a global model with-
out sharing private and sensitive information. While FL
provides scalable privacy-preserving training capabilities,
it is susceptible to adversarial poisoning attacks. Exist-
ing defense techniques, including Byzantine robust aggre-
gation rules, against data poisoning attacks in FL, have
several limitations. (i) Trade-off between precision and ro-
bustness, (ii) assumptions related to asymptotic optimal-
bounds on error rates of parameters, (iii) i.i.d. data distri-
butions, and (iv) strong-convex nature of optimization prob-
lem. To overcome these limitations, we propose federated
learning optimal transport (FLOT), a dynamic weighted
federated aggregation technique to mitigate data poison-
ing attacks. We leverage Wasserstein barycentric approach
to obtain a global model from a given set of local models
trained privately on client devices. Further, we propose
loss function-based rejection (LFR) to suppress malicious
updates and provide a set of weighted coefficients to the
Wasserstein barycentric optimization function. We demon-
strate the effectiveness of the proposed FLOT framework on
three benchmark datasets, namely, GTSRB, KBTS, and CI-
FAR10. Experimental results show that the proposed FLOT
aggregation outperforms existing baselines by ≈ 2% and
≈ 9% under single and multi-client attack settings, respec-
tively. Further, we show that the performance of our FLOT
is better than state-of-the-art by a significant margin on the
datasets mentioned above.

1. Introduction

Multi-agent federated learning (FL) has attracted the at-
tention of researchers because of its use in several appli-
cations, such as signal processing, mobile user person-
alization, speech recognition, and more [1–3]. Feder-
ated learning can simultaneously offload the computation
and memory-intensive training work onto multiple low-end

Figure 1. Validation losses of individual client model at the server
for 100 global communication rounds under 33% multi-attack set-
tings for KBTS dataset. Here, the global model is updated with the
remaining good-performing client updates. For the next iteration,
the clients train their local models using this new global model.

computation devices, referred to as clients [4, 5]. FL func-
tions as a highly distributed decentralized system preserving
data privacy [6] with limited communication, and computa-
tional capabilities [7].

Despite the advantages of privacy and shared intelli-
gence, FL with deep neural networks (DNN) faces unique
challenges w.r.t. data and system heterogeneity, computa-
tion and memory constraints [8, 9] and adversarial poison-
ing attacks [10].

Past works [11–13] in FL have exposed its high vul-
nerability to adversarial attacks under the white-box set-
ting. However, they are somewhat unrealistic as the attacker
needs to have complete knowledge of the model structure
and parameters distributed across all the clients. Our state-
of-the-art study has shown that the FL research community
is showing more interest in investigating the black-box ad-
versarial attacks [14]. For example, in autonomous vehi-
cles, where the FL setting is more relevant, these attacks can
misdirect the vehicle controller, which might result in catas-
trophic events. In this paper, we focus on untargeted data
poisoning attack in FL as it is the most common and rele-
vant to production deployments [15]. Specifically, the at-
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tacker is interested in generic misclassification (untargeted)
rather than specific misclassification (targeted).

Existing defenses against FL data poisoning attacks are
either based on anomaly detection or using a novel model
aggregation to dampen the poisoned update effectiveness.
The anomaly detection-based techniques detect malicious
clients by grouping various aspects of client updates and re-
moving those that are not part of a majority group. And
these techniques vary according to different aspects of
client updates [16]. Recently, Rieger et al. proposed Deep-
Sight [17], which uses deep inspection of the updates in NN
layers to detect anomalous updates. Further, the aggrega-
tion techniques such as Krum [18], trimmed mean [19], and
median [19] claim to be Byzantine robust. However, they
have some critical limitations in common. For example,
they only provide asymptotic bounds that are far from prac-
tice. Specifically, they only offer the order-optimal bounds
on error rates of parameters. However, even if such order-
optimal bounds are given, there is no guarantee for classi-
fication performance on the learned global model. Further,
they strongly assume that data is divided in an i.i.d. fashion,
and the optimization problem is strongly convex, which is
not practical in real-world scenarios. Hence, to overcome
the above limitations, we propose federated learning opti-
mal transport (FLOT), an OT-based dynamic weighted fed-
erated aggregation, to mitigate poisoning attacks. Our de-
fense is based on the hypothesis that the updates from a
malicious client doing data poisoning will differ from be-
nign client updates in terms of loss of validation data at the
server. Figure. 1 shows the validation loss of 10 clients un-
der multi-client attack settings. We observe a clear disper-
sion in the malicious clients’ loss values for initial rounds.
Further, when we remove them for each round, the models
eventually converge after 60 rounds.

Hence, our technique is based on loss function-based re-
jection (LFR) that suppresses updates from high-loss per-
forming malicious updates and then applies OT optimiza-
tion to smoothen the aggregated global model. Specifically,
we leverage the benefits of Wasserstein barycenters in order
to obtain a global model from a given set of local models.
Further, the LFR provides the weighted coefficients for the
Wasserstein barycentric function that helps in discarding the
malicious updates. The main contributions of this paper are:

1. Explored optimal transport-based optimization to mit-
igate data poisoning attacks in federated learning.

2. Proposed a dynamic weighted federated aggregation
method called FLOT for secure aggregation of gradi-
ent updates on a global server.

3. Presented the proposed FLOT time complexity as
O(n.d) which is a significant improvement over
O(n2.d) of the Krum function [18].

4. The proposed FLOT method is evaluated on three
baseline methods and three Byzantine robust aggre-
gation rules under no attack, single-client attack, and
multi-client attack (33% Byzantine) settings.

5. The experiments are demonstrated on three datasets,
namely, GTSRB [20], KBTS [21], and CIFAR10 [22],
that signify the potential of the proposed FLOT ap-
proach.

2. Related Work
This section reviews existing literature and relates to our

proposed methodology from two perspectives: adversarial
attacks in federated learning and optimal transport methods
in machine learning.

2.1. Adversarial Attacks in Federated Learning

Adversarial attacks against ML models and DNN have
received much attention [23–25] in recent years. There has
been vast research interest in adversarial attacks for deep
neural networks, which can cause potential security inci-
dents even with small perturbations [23]. This interest has
trickled into privacy-preserving federated learning [26, 27]
as researchers have begun exploring it in adversarial set-
tings [11]. Since clients in FL communicate local model
updates to the central server, adversarial attacks in FL are
usually performed either through client data (data poison-
ing) or model updates (model poisoning). Broadly, there
are two major types of adversarial attacks in FL: targeted &
untargeted data poisoning and model poisoning. Below, we
discuss the current works on different kinds of FL attacks.

Data Poisoning Attacks: In this category, the attacker
or the malicious client tries creating data (i.e., poisonous)
that - through local model updates - leads to an incorrect or
imprecise global model. The black-box adversarial attack in
multi-agent communication was first propagated in [28] us-
ing a computationally expensive surrogate-based approach.
Zhang et al. [12, 29], Hitaj et al. [30], Wang et al. [31]
proposed a generative adversarial attack (GAN) based poi-
soning attack method in the context of federated learning.
Tolpegin et al. [32] studied targeted data poisoning attacks
against FL systems in which a malicious subset of the par-
ticipants aim to poison the global model by sending model
updates derived from mislabeled data. Wang et al. [33]
proposed an edge-case backdoor attack that forces a model
to misclassify on seemingly straightforward inputs that are,
however, unlikely to be part of the training or test data and
live on the tail of the input distribution.

Model Poisoning Attacks: In this second category, the
attacker directly sends malicious updates [11, 34]. Bhagoji
et al. [11, 34] have focused on targeted model poisoning
as opposed to data poisoning of prior works. Bagdasaryan
et al. [35] proposed a backdoor FL attack framework that
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trains on the backdoor data using a constraint-and-scale
technique and sends the resulting corrupted model as an up-
date to the central server. Shejwalkar et al. [36] proposed a
general model poisoning attack by computing the malicious
model update through maximally perturbing the benign ref-
erence aggregate in the malicious direction.

In this paper, we focus on defending untargeted data
poisoning in FL as we find it to be significantly most com-
mon and relevant to production deployments [15]. Also,
data poisoning attacks can affect a large population of FL
clients and remain undetected for a longer period.

2.2. Optimal Transport in Machine Learning

Optimal Transport (OT) theory has been gaining signif-
icant attention from the machine learning community due
to its efficiency in modeling various ML applications [37].
Computer vision: early works [38] used OT formulations
(Wasserstein distance) in computer vision applications to
find the dissimilarity measure between the images. Also,
OT is used to perform the image-to-image color transfer,
the color of a source image to match the color of a target
image of the same scene [39, 40]. GANs: research has been
done to improve generative adversarial networks (GANs)
using OT [41–43]. Liu et al. [44] proposed WGAN-QC,
a WGAN with quadratic transport cost (Optimal Transport
Regularizer) to stabilize the training process of WGAN-QC
and prove that it converges to a local equilibrium point with
finite discriminator updates per generator update. Semantic
correspondence: Liu et al. [45] tries to establish dense cor-
respondences across semantically similar images by solving
the many-to-one matching and background-matching issues
using OT. Domain adaptation: early works [46, 47] intro-
duced a regularized optimal transport model in an unsuper-
vised way to align the representations in the source and tar-
get domains. Graph matching: Gromov et al. [48] proposed
a novel Gromov-Wasserstein learning framework to jointly
match (align) graphs and learn embedding vectors for the
associated graph nodes. Finally, very few works used OT to
improve the federated learning system [49,50]. However, to
the best of our knowledge, there is no explicit use of OT in
FL to defend against data-poisoning attacks. We are the first
to model a defense mechanism using the OT framework.

3. Proposed Approach
This section presents the proposed FLOT approach to

mitigate data poisoning attacks as shown in Figure 2.

3.1. Overview of Federated Learning

Federated Learning involves bringing machine learning
(ML) capabilities to local clients for building models with
local datasets, ensuring their data privacy. It consists of a
total of n clients, each with access to local data Di, where
i is the client’s index, i ∈ n, and 1 ≤ i ≤ n. Each client

maintains its own copy of the data shard as private, such
that Di = {xi

1...x
i
li
} and |Di| = li is not shared with the

server.

Figure 2. Overview of FLOT integrated into a FL system with n
clients (C1, C2, . . . , Cn). The malicious client (C2) is poisoning
the training data. The central server receives the gradients and
performs FLOT to obtain the global model WG.

Initialization: The server generates the initial global model
by training on some amount of auxiliary data.
Client execution: At each global epoch t, every client: (i)
tries to minimize the empirical loss over its data shard and
trains the classification algorithm with a batch size of bs for
E local epochs with the initial global model wt

G, (ii) after
the completion of training phase with E local epochs, all
client(s) calculate the local updates using ∆Cn

t+1 = wn
t+1−

wG
t , and (iii) these individual client model updates are sent

back to the central server for model aggregation.
Server execution: At each global epoch t, the central
server: (i) sends the current version of the global model
to update all n agents, (ii) receives the local client up-
dates and performs global model aggregation using syn-
chronous federated weighted averaging [9] as wG

t+1 = wG
t +∑

n∈n λn∆Cn
t+1, where, λn = ln∑

ln
and

∑
n λn = 1,

i.e., the updates are used to generate the ‘aggregated’ global
model synchronously for t global epochs, and (iii) performs
global model testing using the updated global model on the
test data at the server.

Further, as federated weighted averaging is a naive ag-
gregation rule that averages the local model parameters to
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obtain the global model parameters, it is widely used under
non-adversarial settings [9,51]. However, federated averag-
ing is not robust under adversarial settings as the attacker
can manipulate the global model parameters arbitrarily for
this mean aggregation rule when compromising only one
client device [18, 19]. Hence, we take an optimal transport-
based dynamic aggregation approach to improve federated
averaging and mitigate data poisoning attacks in FL.

We ensure a non-i.i.d. (independent and identically dis-
tributed) dataset by splitting the dataset randomly among
clients with the number of samples as lk >= ζ, where
ζ is the minimum threshold to ensure proper FL protocol.
An overview of the proposed FLOT in federated learning is
shown in Figure 2.

3.2. Threat Model

In our threat model, the main goal of the adversary is to
poison the global model so that it makes wrong predictions
on clean test data. The threat model assumes a black-box
attack scenario wherein the adversary has little to no knowl-
edge about the model architecture and has no access to its
gradients. The adversary can only access the local model’s
predicted class labels and probability scores to generate ran-
dom gradient perturbations.

Our threat model also consists of a single (fixed attacker
clients) and multi-client attack (random malicious clients)
scenarios. The adversary can poison the central server only
through the local model update that is poisoned using mali-
cious data. Avoiding a single point of failure, the aggrega-
tion algorithm is considered beyond the attacker’s control.
In addition, malicious clients cannot directly poison other
benign participants’ learning phase or training data Dbenign

until and unless the node is explicitly specified as an adver-
sary node. This implies that clients marked malicious must

3.3. Designing the Adversarial Attack

The attacker performs the following steps for attacking
the FL setup: (i) generate adversarial samples based on the
gradient-based black-box attack method, (ii) add these sam-
ples to the local training dataset, (iii) train the local model,
(iv) finally transmitting the malicious updates to poison the
global model.

Black-box attack method: In this paper, we consider
the M-SimBA data poisoning attack proposed by Kumar et
al. [52] as it is recent and powerful to other gradient-based
black-box attack methods. In order to generate an adver-
sarial image, a random gradient perturbation is added to the
original image and is calculated as Iadv = Ix + ϵ ∗ Gp,
where Iadv is the adversarial image, Ix is the original im-
age, and Gp is the randomized gradient perturbation. The
step size (ϵ) controls the intensity of perturbation. The al-
gorithm repeats the above process until it generates the final
adversarial image as per Eq. (3.3). In addition, it converges

on the L2 norm such that ||Iadv − Ix||2 < θ. Threshold pa-
rameter θ controls the deviation of adversarial image w.r.t.
original image without, making it perceivable to the human
eye. More details about the attack can be found in supple-
mentary material.

3.4. Proposed Defense Mechanism

In this subsection, we discuss the background of opti-
mal transport (OT), problem formulation, and proposed al-
gorithm for dynamic model aggregation to discard the poi-
sonous model updates.

Overview of optimal transport (OT): Gaspard Monge in-
troduced OT [53], [54] to find the most efficient way to
move a unit of mass between two distributions. The aim is
to minimize the overall ground cost to move the unit mass
from the source distribution to the target distribution. The
optimization problem can be given as

min
t, t ̸=µs=µt

∫
C(a, t(a)) dµs(a), (1)

where µs, µt correspond to source and target distributions,
respectively. C(., .) is the ground cost of moving a unit
mass between two positions x, t(x). The constraint t ̸=
µs = µt ensures that the source is completely transported
to the target. In general, the OT solution is used in two main
aspects, (i) to find the optimal value that measures the simi-
larity between two distributions, also known as Wasserstein
distance. (ii) To find the OT matrix, which is the optimal
correspondence mapping between distributions.

Wasserstein Barycenters [55]: It is a distribution that
minimizes the weighted sum of Wasserstein distance w.r.t
all other distributions. It aims to find a distribution µ such
that

min
µ

∑
n

αnW(µ, µn), (2)

where αi represent the weight of distribution µi, W(., .)
correspond to Wasserstein distance between distributions
given by

W(µ, µn) = inf
γ∈Γµ,µn

E
(X ,Y∼γ)

||X − Y||22, (3)

where inf is take over couplings between µ and µn.
Problem formulation: Let us assume we are at tth com-

munication round in federated learning such that the server
receives the model updates from all the n clients, and Dv is
the validation data at the server. Let {wt

1, w
t
2, . . . , w

t
n} are

model updates that correspond to {c1, c2, . . . , cn} clients,
respectively. Also, let us assume there are ρ unknown ma-
licious client updates ρ < n. Now, the aim is to find
a global model weight wt

G that minimizes its weighted
Wasserstein distance w.r.t other benign client model weights
w[1,2,...,n] after dynamically discarding the malicious up-
dates as shown in Figure 3.
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Figure 3. Visualization of global model WG interpolation for t communication rounds. Our proposed FLOT framework helps in suppress-
ing malicious clients by dynamically assigning α′

is to the local client models wj at each communication round. The clients with α = 0
are discarded otherwise weighted coefficients are assigned to their respective clients.

Different variations of OT optimization: Recent devel-
opments in OT have resulted in different variations of OT
optimization. (i) Regularized OT: It is expressed as

γ∗ = argminγ∈Rmxn
+

∑
i,j

γi, jMi,j + λω(γ)

s.t.γ1 = a; γT 1 = b; γ ≥ 0, (4)

where M ∈ Rmxn
+ is the cost matrix to move mass

from bin ai to bin bj , a, b are histograms that repre-
sent the weight of each sample in the source and tar-
get distributions. ω is the regularization term. (i) En-
tropic Regularized OT: Marco Cuturi [56] smooth the clas-
sic OT problem with an entropic regularization term and
show that the resulting optimum is also a distance that
can be computed through Sinkhorn’s matrix scaling al-
gorithm faster than that of transport solvers. It is ex-
pressed as γ∗

λ = diag(u)Kdiag(v), where u, v are vec-
tors and K = exp(−M/λ) and exp is taken component-
wise. In addition, there are other regularizations such as
quadratic (ω(γ) =

∑
i,j γ

2
i,j), that have a similar effect

to entropic regularization yet keeps some sparsity that is
lost when λ > 0 [57]. Group lasso regularization given
by (ω(γ) =

∑
j,G∈ζ ||γG,ζ ||pq), where ζ contains non-

overlapping groups of lines in the OT matrix [58]. Fur-
ther, there are other optimizations and problem formula-
tions such as Wasserstein discriminant analysis [59], unbal-
anced OT [60], etc. Finally, our proposed optimization is
intuition-based with respect to defending against data poi-
soning attacks in FL. We formulate our problem statement
in terms of Wasserstein barycenter as per Eq. 2.

Definition 3.1 ((ω, ρχ) - Byzantine Resilience). Let [N ] =

{w1, . . . , wn} be any non-independent indentically dis-
tributed (non-i.i.d.) local clients models in Rd. Let [R] =
{w1, . . . , wρ} be any non-i.i.d. Byzantine local clients mod-
els. Let [X ] = {w1, . . . , wχ} be any highly non-i.i.d. be-
nign local clients models. An aggregation rule A is said
to be (ω, ρχ)-Byzantine Resilience) if for any 1 ≤ · · · ≤
i1 · · · ≤ iρ · · · ≤ j1 ≤ · · · ≤ jχ ≤ . . . n, vector

A = A(w1, . . . , w
′
1, . . . , w

′
ρ, . . . , w

′′
1 , . . . , w

′′
χ, . . . , wn)

(5)
satisfies the following∑

k∈([N ]−[R])

(L(Dv, wk) ≤
∑

k∈[N ]

(L(Dv), wk), (6)

∑
k∈([N ]−[X ])

(L(Dv, wk) ≤
∑

k∈[N ]

(L(Dv), wk), (7)

∥∥∥∥∥∥
∑

k∈[N ]

(L(Dv, wk)−
∑

k∈[N ′]

(L(Dv, wk)

∥∥∥∥∥∥ ≥ ω, (8)

for some ω ≥ 0. Here,N = [N ′]− ([R]+ [X ]), L(Dv, wk)
denote the loss of wi model on validation data Dv .

Proposed optimization: We introduce FLOT, an OT-
based (ω, ρχ) - Byzantine Resilient (as defined in Defini-
tion 3.1, we give the detailed proof in the supplementary
material in Proposition 1) dynamic weighted federated ag-
gregation rule to mitigate poisoning attacks. Blanchard et
al. [18] prove that no linear combination of the vectors can
tolerate a single Byzantine worker (refer Corollary 1 in sup-
plementary material). Specifically, federated averaging [9]
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is not Byzantine resilient. Existing Byzantine robust algo-
rithms like Krum [18] select the local model updates rep-
resentative of most client models by computing the pair-
wise distances between individual models. However, when
the data across the workers are highly non-i.i.d., there is no
‘representative’ client model. The local client models show
high variance with respect to each other as they compute
their local gradient over vastly diverse local data. Hence,
for convergence, it is crucial to not only select a good (non-
Byzantine) local model but also ensure that each of the good
models is selected with roughly equal frequency. Further,
when applied to non-i.i.d. datasets, Krum performs poorly
even without any attack [61]. This is because Krum primar-
ily selects models from n− c− 2 (where c is the number of
malicious clients), local models whose pairwise distances
are closer to others. Hence, the robust aggregation rules
may fail on realistic non-i.i.d. datasets.

To circumvent this issue, we consider LFR with OT op-
timization to develop Wasserstein barycentric aggregation
rule (FLOT). In the end, through our experimental results,
we show that our FLOT also serves as a robust client selec-
tion technique in discarding the benign clients that do not
perform well on the validation data. This implies that drop-
ping some less performing benign updates helps to improve
the accuracy, which also supports the claims of the recent
work, DivFL [62].

Now, we explain our FLOT framework. To start with, we
find the optimal coefficients set of the client model weights
α based on loss on validation data Dv , i.e., Lv of every
client model wi. It can be formulated as

α← Lv(w,Dv), (9)

α′ ← |α−max(α)|. (10)

Now, we define a set α′
0 = α′ and write

β1 := {b ∈ α′
0 : b ≤ a ∀ a ∈ α′

0}. (11)

Next, we define α′
1 := α′

0 \ β1 which discards the highly
malicious weight coefficient from the set α′

0. Further, we
inductively write

βk := {b ∈ α′
k−1 : b ≤ a ∀ a ∈ α′

k−1}, (12)

α′
k := α′

k−1 \ βk, (13)

such that α′
k is the final set after discarding k malicious

client updates whose α′ = 01. Further, we normalize α′
k

to [0, 1] through the softmax of all weighting factors, which
is defined as:

α′
k =

eα
′
k∑n

k=1 e
α′

k

. (14)

1Since all the local models are trained on different amounts of non-i.i.d.
data, all α′

is are different, where i ∈ [1, n].

Now, our optimization problem can be formulated in
terms of Wasserstein barycenter as per Eq. 2 as

FLOT (wt
1, w

t
2, . . . , w

t
n)← min

wt
G

∑
k

α′
kW(wt

G, wk),

(15)
where t is the global communication round.

Lemma 3.2 The expected time complexity of our FLOT
function FLOT (wt

1, w
t
2, . . . , w

t
n), where, wt

1, w
t
2, . . . , w

t
n

are d-dimensional vectors is O(n.d).

Proof. Firstly, the parameter server computes the maxi-
mum of loss values (α1, α2, . . . , αn) and updates all its ele-
ments |α−max(α)| (timeO(n.d)). Then the server selects
the loss that is less than a certain threshold (expected time
O(nlog(n).d) with a binary search). Next, it computes the
set difference to discard the highly malicious weight vector
(timeO(n.d)). Finally, the server normalizes the remaining
n−k values (timeO(n.d)). Hence, adding all the times, we
obtain the overall time complexity of FLOT as O(n.d).

We report that our proposed FLOT time complexity is
O(n.d) which is a significant improvement overO(n2.d)
of the Krum function [18].

4. Convergence Analysis
In this section, we analyze the convergence of global

model aggregation for convex problems under assumptions
of non-identically distributed data, full device participation,
and local model updating. Our FLOT optimization func-
tion, as per Eq. 15 is given by

FLOT (w1, w2, . . . , wn)← min
wG

∑
k

α′
kW(wG, wk).

(16)
Rewriting it, we get the FLOT barycenter functional as

w∗
G ∈ argmin

w∈P2(Rd)

α′
k

k∑
i=1

W2
2(wG, wk) =: 2FLOT (wG)

2,

(17)
(from Wasserstein-2 spaces (W2

2)- it is the metric space of
probability measures P2(Rd), equipped with Wasserstein
distance as given in Eq. 3). The aim is to minimize
FLOT (wG). Further, we can write the Wasserstein gra-
dient of the above formulation using Brenier map [63] as

∇FLOT (wG) = −α′
k

k∑
i=1

(TwG→wi − τ), (18)

where TwG→wi
is the Brenier map, τ is the identity that

gives the displacement map of wG. Finally, the gradient

2We scaled to one half so that when the derivate is taken the term 2
goes away.
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descent of the global model over W metric space is given
by

wt+1
G = (τ − ηt∇FLOT (wG))#w

t
G

=⇒ wt
G − (τ − ηt∇FLOT (wG))

= (τ + α′
k

k∑
i=1

(TwG→wi − τ)#w
t
G; (Eq.18)

= (1− ηt)w
t
G + ηtα

′
k

k∑
i=1

TwG→wi
(wt

G).

(19)

Further, we apply the Polyak-Łojasiewicz (PL) inequality
[64] given by

f(x)− inf f ≤ C||∇f(x)||2,∀x, (20)

followed by smoothness of gradient [65] given by

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ β

2
||y − x||2, (21)

for some function f(x), the derivative of f as ∇f(x) and
constant C, to prove the linear rate (exponentially) of con-
vergence for gradient descent. Finally, the linear rate of
convergence of FLOT for gradient descent is given by

FLOT (wt+1
G )− FLOT (wt

G) ⪅ e−
α′
k

2C t. (22)

5. Experiments

In this section, we demonstrate the efficacy of the pro-
posed FLOT on the three datasets, namely, the German traf-
fic sign recognition benchmark (GTSRB) [20], KUL Bel-
gium traffic sign (KBTS) [27], and CIFAR10 [66]. We scale
the three datasets to an average resolution of 150× 150 for
our experimentation. We set ζ = 900 samples in local client
data shards for three datasets. Based on the data availabil-
ity, we set the total number of clients as 30, 10, and 30 for
GTSRB, KBTS, and CIFAR10 datasets.

We build a custom 4-layer CNN architecture followed by
two fully connected layers and treat this as a global model.
The model is trained with images of size 150 × 150 using
categorical cross-entropy as loss function optimized using
Adam optimizer. During the training of the global classi-
fier for 200 epochs through FL protocol, each client trains
for E = 5 local epochs on the local data with a batch
size bs = 64 and with a learning rate of lr = 0.01. All
the clients are trained individually and sequentially at each
global epoch. More details about the dataset, CNN archi-
tecture and the related source codes are given in the supple-
mentary material.

5.1. Attack Configurations

We use a black-box and active data poisoning attack
MSimBA [52] (3.3), a recent gradient-based technique to
generate adequate poisoned data. We set ϵ = 0.7 and the
maximum iterations for MSimBA as 1000. We use two at-
tacker settings, namely single-client and multi-client. For
multi-client attack scenarios, we set 33% of randomly cho-
sen clients as malicious (following the Byzantine client set
up in [18]).

5.2. Baselines and Configurations

We use the following baselines and configurations of
FLOT to evaluate its effectiveness:
1. FL [9]: Normal federated learning without any defense.

Ideally, should perform similarly to this baseline under
no attack scenarios.

2. Random Sampling (RS) of the Clients: This represents
the FL system with random sampling, where the server
randomly selects some updates for aggregation. As our
FLOT involves generating loss function-based weighted
coefficients that drop the malicious clients, followed by
OT optimization, it should perform better than RS.

3. Power-of-choice [67]: In this work, the server selects the
clients with the largest training losses.

4. DivFL [62]: This is a recent work that proposes a tech-
nique to perform FL by selecting a group of clients based
on submodular optimization.

5. FLOT Configurations: We use two configurations of
FLOT, namely, FLOT (our method) and RS+FLOT (our
method includes random sampling for better results).

We use the following Byzantine Robust Aggregation ap-
proaches to perform a comparative evaluation:
1. Krum [18]: As explained in Section 3.4, Krum selects

one local model updates that are representative of a ma-
jority of client models. We set c = 10 for GTSRB and
CIFAR10 datasets and c = 3 for the KBTS dataset to
handle the 33% malicious clients in our experimentation.

2. TM [19]: Trimmed mean (TM) aggregates each dimen-
sion of input updates separately and sorts the values
along the ith-dimension. Then it removes x largest and
smallest values of that dimension and computes the aver-
age of the rest. We consider the suggested configuration
of x = 5 for GTSRB, CIFAR10, and x = 1 for KBTS
datasets to handle the 33% malicious clients in our ex-
perimentation.

3. Median [19]: The median aggregates each dimension of
input updates separately and sorts the values of the ith-
dimension. Then it takes the median as the ith parameter
of the global model.

5.3. Effectiveness

Table 1 gives the performance of the proposed FLOT
framework in comparison to the baselines and Byzantine
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Table 1. Comparison of global test accuracy (%) with existing baseline methods and Byzantine aggregation rules. Bold result indicates the
best result for setting. (c/n) represents the ratio of the number of malicious clients to the total number of clients.

GTSRB [20] KBTS [27] CIFAR10 [66]

Comparison Method
No

attack
(0/30)

Single-client
attack
(1/30)

Multi-client
attack
(10/30)

No
attack
(0/10)

Single-client
attack
(1/10)

Multi-client
attack
(3/10)

No
attack
(0/30)

Single-client
attack
(1/30)

Multi-client
attack
(10/30)

Baselines

FL [9] 87.8 83.24 70.63 90.02 83.26 73.14 91.23 85.03 73.83
RS 86.68 84.45 65.45 87.92 84.24 70.53 90.54 82.98 75.33

Power-of-choice [67] 87.56 81.29 63.72 88.05 80.27 69.38 92.64 73.86 70.84
DivFL [62] 87.12 82.63 72.08 89.96 81.63 71.63 92.86 74.12 71.19

Byzantine
Robust
Aggregation

Krum [18] 86.72 85.80 79.98 89.97 84.29 77.72 91.46 85.12 81.33
TM [19] 84.32 82.87 77.45 88.52 84.09 72.96 90.64 84.43 80.64

Median [19] 85.23 83.39 78.64 88.27 84.97 75.26 89.91 83.36 81.62

Ours FLOT 86.24 85.12 81.12 89.12 85.94 79.94 91.51 85.21 82.26
RS+FLOT 87.01 85.98 82.26 89.36 85.02 78.02 92.37 86.24 83.54

robust aggregation methods on three benchmark datasets,
namely, GTSRB, KBTS, and CIFAR10. Our FLOT con-
figurations consistently outperform the other methods for
all the datasets. Under the no-attack setting, our approach
closely performed to that of the FL baseline with < 1% dif-
ference for GTSRB and KBTS dataset and outperformed for
CIFAR10 dataset. This is due to a large number of classes
with inter and intra-class variability in the GTSRB and
KBTS dataset that led to the discarding of benign clients
models with a slight difference in the loss values. Also, the
FedAvg tries to achieve the local-optimum error rate when
the objective function is strongly convex under no attack.
On the contrary, given a good amount of data, our FLOT
configuration was able to sample updates that improved per-
formance under no attack on the CIFAR10 dataset.

Further, our FLOT outperformed all the baselines under
single and multi-client attack settings. For GTSRB and CI-
FAR10 datasets with 30 clients, we observe that RS+FLOT
performed 82.26% and 83.54%, respectively, which is bet-
ter than FLOT. For single-client attacks, as the number of
benign clients is one less than the total clients, they try to
dampen the effect of the single malicious client. Hence,
all baselines and Byzantine aggregation techniques are per-
formed on a similar scale. Comparatively, our FLOT con-
figurations outperformed other methods and rules by more
than 0.5%. Power-of-choice and DivFL are effective client
selection techniques under clean data settings; hence, their
optimizations perform poorly under attack settings. Also,
the non-i.i.d. data distribution among the client and strong
data poisoning attack resulted in a performance drop of
Krum as it is based on strong i.i.d. assumption [18]. In ad-
dition, trimming model updates after sorting client updates,
including median, results in considering malicious updates
for aggregation. For GTSRB and CIFAR10 datasets with 30
clients, we observed that RS+FLOT performed better than
FLOT. This is due to the availability of a large number of
clients, and RS already discards some clients that may be
malicious. Hence, applying FLOT on top of RS is effective.
On the contrary, applying RS on KBTS data with only 10

clients discards some clients, and further discarding using
FLOT has resulted in lower performance. Hence, the ag-
gregated global model performs poorly under higher attack
percentages. Detailed performance plots are provided in the
supplementary material.

In summary, our OT-based optimization using Wasser-
stein barycenters allows us to effectively interpolate be-
tween multiple client updates [68] by warping them using
the loss-based weighted coefficients that are dynamically
suppressing the malicious updates. FLOT configurations
outperformed all the baselines under two different attack
settings and are close to the FL baseline with less than 1%
difference under no attack for two datasets. Also, our FLOT
configurations outperformed the existing Byzantine robust
aggregation techniques by more than 0.5% and more than
1% under single-client and multi-client attacks. This im-
plies that FLOT is Byzantine robust under non-i.i.d. data
poisoning attacks.

6. Conclusion

In this paper, we proposed an optimal transport-based
dynamic weighted federated aggregation to mitigate untar-
geted data poisoning attacks in an FL framework. The pro-
posed FLOT framework effectively interpolates the global
model update using the proposed loss-based weighted co-
efficients. It leverages the OT optimization using Wasser-
stein barycenters to obtain smoothed global model after dis-
carding the malicious updates. We show through our ex-
perimental results that the proposed FLOT configurations
achieve better classification performance under single and
33% Byzantine workers compared to other methods, includ-
ing Byzantine robust aggregation rules. Also, the time com-
plexity analysis shows an improvement over the Krum ag-
gregation rule by a factor of n, where n is the number of
clients. In the future, we will explore different variations of
OT optimizations, including regularization to account for
higher maliciousness (> 33% attackers), higher order of
non-i.i.d.ness, and other data and model poisoning attacks.
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[53] G. Monge, “Mémoire sur la théorie des déblais et des rem-
blais,” Histoire de l’Académie Royale des Sciences de Paris,
1781. 4

[54] L. V. Kantorovich, “On the translocation of masses,” Journal
of mathematical sciences, vol. 133, no. 4, pp. 1381–1382,
2006. 4

[55] M. Agueh and G. Carlier, “Barycenters in the wasserstein
space,” SIAM Journal on Mathematical Analysis, vol. 43,
no. 2, pp. 904–924, 2011. 4

[56] M. Cuturi, “Sinkhorn distances: Lightspeed computation of
optimal transport,” Advances in neural information process-
ing systems, vol. 26, 2013. 5

[57] M. Blondel, V. Seguy, and A. Rolet, “Smooth and sparse op-
timal transport,” in International conference on artificial in-
telligence and statistics, pp. 880–889, PMLR, 2018. 5

10



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVPR
#9680

CVPR
#9680

CVPR 2023 Submission #9680. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[58] R. Flamary, N. Courty, D. Tuia, and A. Rakotomamonjy,
“Optimal transport for domain adaptation,” IEEE Trans. Pat-
tern Anal. Mach. Intell, vol. 1, 2016. 5

[59] R. Flamary, M. Cuturi, N. Courty, and A. Rakotoma-
monjy, “Wasserstein discriminant analysis,” Machine Learn-
ing, vol. 107, no. 12, pp. 1923–1945, 2018. 5

[60] C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Pog-
gio, “Learning with a wasserstein loss,” Advances in neural
information processing systems, vol. 28, 2015. 5

[61] L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust
learning on heterogeneous datasets via resampling,” 2020. 6

[62] R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and
J. Bilmes, “Diverse client selection for federated learning via
submodular maximization,” in International Conference on
Learning Representations, 2021. 6, 7, 8

[63] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in
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